
CS636:Performance Analysis
of Concurrent Programs

Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Evaluating an Application

Functional correctness

• Does the application compute/produce what it is supposed to do?

Performance correctness

• Does the application meet the performance requirements?

CS636 Swarnendu Biswas 2

Testing for Performance

• No one wants slow and inefficient software
• Leads to reduced throughput, increased latency, and wasted resources

• Leads to poor UX

• Software efficiency is increasingly important
• Hardware is not getting faster (per-core)

• Software is getting more complex

• Saving energy is now a primary concern

Still not
finished?!!!

What is a Performance Bug?

CS636 Swarnendu Biswas 4

Relatively simple modifications to the source code
results in significant performance improvement, while
preserving functionality

Functional and Performance Bugs

Functional Bugs

• Well-defined notion of success and
failure

• Correctness requirements usually do
not change over time
• Other than significant changes in the

specification

• More focus on researched testing
methodologies

• Rate of bugs generally flatten out with
maturity

Performance Bugs

• Difficult to detect because of no
failure symptoms

• Performance requirements may
evolve over time

• Relative lack of formalized testing
methodologies

• Rate of bugs reported have no trends

CS636 Swarnendu Biswas 5

Real Time Requirements

• Must meet the prescribed deadline, complete failure otherwise

Hard

• Can infrequently miss deadlines, the resultant computation might be
useless, degrades QoS

Firm

• Might miss deadlines as long as the computation continues to have
some value, degrades QoS

Soft

CS636 Swarnendu Biswas 6

Characteristics of Performance Bugs

• Performance bugs can be difficult to fix
• Contradictory requirements – a thread-safe class needs synchronization for

correctness and needs to scale at the same time

• Diminishing returns in fixing performance bugs

CS636 Swarnendu Biswas 7

Thread Safe (?) Class from Groovy

CS636 Swarnendu Biswas 8

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

M. Pradel et al. Performance Regression Testing of Concurrent Classes. ISSTA 2014.

Fixing a Thread Safe Class from Groovy

CS636 Swarnendu Biswas 9

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.setInitialized(true);

}
synchronized void setInitialized(boolean b) {
this.initialized = b;

}
synchronized boolean isInitialized() {
return this.initialized;

}
}

Before October 2007: Class is not
thread-safe because reads and writes

of initialized are not synchronized

October 2007: Fixed thread safety problem by
making methods synchronized. Led to

performance regression reported in May 2009.

Fixing a Thread Safe Class from Groovy

CS636 Swarnendu Biswas 10

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.setInitialized(true);

}
synchronized void setInitialized(boolean b) {
this.initialized = b;

}
synchronized boolean isInitialized() {
return this.initialized;

}
}class ExpandoMetaClass {

private volatile boolean initialized;

synchronized void initialize() {
if (!this.initialized)
this.setInitialized(true);

}
void setInitialized(boolean b) { this.initialized = b; }
boolean isInitialized() { return this.initialized; }

}

September 2009: Fixed performance
regression by replacing synchronized

methods with volatile variables

Fixing a Thread Safe Class from Groovy

CS636 Swarnendu Biswas 11

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.setInitialized(true);

}
synchronized void setInitialized(boolean b) {
this.initialized = b;

}
synchronized boolean isInitialized() {
return this.initialized;

}
}class ExpandoMetaClass {

private volatile boolean initialized;

synchronized void initialize() {
if (!this.initialized)
this.setInitialized(true);

}
void setInitialized(boolean b) { this.initialized = b; }
boolean isInitialized() { return this.initialized; }

}

September 2009: Fixed performance
regression by replacing synchronized

methods with volatile variables

Why have the synchronized keyword
then? Wouldn’t volatile suffice?

Example 1

CS636 Swarnendu Biswas 12

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Apache HTTPD developers forgot to change a parameter
of API apr_stat after an API upgrade. This mistake caused
more than ten times slowdown in Apache servers.

Example 2

CS636 Swarnendu Biswas 13

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Mozilla developers implemented a procedure nsImage::Draw for figure scaling,
compositing, and rendering, which is a waste of time for transparent figures. This problem
did not catch developers’ attention until two years later when 1 pixel by 1 pixel
transparent GIFs became general purpose spacers widely used by Web developers to
work around certain idiosyncrasies in HTML 4. The patch of this bug skips
nsImage::Draw when the function input is a transparent figure.

Example 3

CS636 Swarnendu Biswas 14

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Users reported that Firefox cost 10 times more CPU than Safari on some popular Web
pages, such as gmail.com. Lengthy profiling and code investigation revealed that Firefox
conducted an expensive garbage collection process GC at the end of every
XMLHttpRequest, which is too frequent. A developer then recalled that GC was added
there five years ago when XHRs were infrequent and each XHR replaced substantial
portions of the DOM in JavaScript. However, things have changed in modern Web pages.
As a primary feature enabling web 2.0, XHRs are much more common than five years ago.
This bug is fixed by removing the call to GC.

Example 4

CS636 Swarnendu Biswas 15

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Users reported that Firefox hung when they clicked ‘bookmark all (tabs)’ with 20 open tabs. Investigation
revealed that Firefox used N database transactions to bookmark N tabs, which is very time consuming
comparing with batching all bookmark tasks into a single transaction. Discussion among developers
revealed that the database service library of Firefox did not provide interface for aggregating tasks into
one transaction, because there was almost no batchable database task in Firefox a few years back. The
addition of batchable functionalities such as ‘bookmark all (tabs)’ exposed this inefficiency problem. After
replacing N invocations of doTransact with a single doAggregateTransact, the hang disappears. During
patch review, developers found two more places with similar problems and fixed them by
doAggregateTransact.

Example 5

CS636 Swarnendu Biswas 16

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

MySQL synchronization-library developers implemented a fastmutex_lock for fast
locking. Unfortunately, users’ unit test showed that fastmutex_lock could be 40
times slower than normal locks. It turns out that library function random() actually
contains a lock. This lock serializes every threads that invoke random(). Developers
fixed this bug by replacing random() with a non-synchronized random number
generator.

Performance Bugs are Surprisingly Common!

Type Language # Bugs

Apache Command-line utility + Server +
Library

C/Java 25

Google Chrome GUI Application C/C++ 10

GCC Compiler C/C++ 10

Mozilla GUI Application C++/JS 36

MySQL Server Software C/C++/C# 28

CS636 Swarnendu Biswas 17

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Reasons for Performance Bugs

Inefficient function call combinations

Redundant work

Resource contention (e.g., suboptimal synchronization, false sharing)

• Many synchronization fixes are just because of performance reasons

Cross core/node communication

Miscellaneous

• Poor data structure choices

• Design/algorithm issues

CS636 Swarnendu Biswas 18

How Performance Bugs are Introduced?

• Mismatch in workload characterization

• Wrong API interpretation

• Miscellaneous
• Wrong functional implementation – leads to redundant work

• Changes in performance requirements

CS636 Swarnendu Biswas 19

Dealing with Performance Bugs

• Compilers and hardware optimizations may not always fix
performance problems

• Automation support is limited and is still being explored
• Design better performance tests

• Use annotation systems

• …

CS636 Swarnendu Biswas 20

Tracking Synchronization
Bottlenecks

CS636 Swarnendu Biswas 23

Synchronization-Related Factors That Affect
Performance

CS636 Swarnendu Biswas 24

Frequency of lock acquisitions

C
o

n
te

n
ti

o
n

M. Alam et al. SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs. EuroSys 2017.

? ?

??

Synchronization-Related Factors That Affect
Performance

CS636 Swarnendu Biswas 25

Frequency of lock acquisitions

C
o

n
te

n
ti

o
n

M. Alam et al. SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs. EuroSys 2017.

affects
performance

Synchronization-Related Factors That Affect
Performance

CS636 Swarnendu Biswas 26

Frequency of lock acquisitions

C
o

n
te

n
ti

o
n

M. Alam et al. SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs. EuroSys 2017.

affects
performance

may affect
performance

may affect
performance

Spectrum of Synchronization Operations

Type of Synchronization Ideal Use Case

atomic instructions simple integer operations (RMW, exchange)

spin locks small critical sections with low contention

read/write locks critical sections with many readers

try locks alternate control flow

mutex locks larger critical sections and may involve waiting

CS636 Swarnendu Biswas 27

Reasons for Synchronization-Related
Performance Loss
• Use of improper primitives

• E.g., use of try locks in case of repeated failures, blocking synchronization
with condition variables might be better

CS636 Swarnendu Biswas 28

extensive synchronization
operations, small CS with

integer operations

Reasons for Synchronization-Related
Performance Loss
• Use of improper primitives

• E.g., use of try locks in case of repeated failures, blocking synchronization
with condition variables might be better

CS636 Swarnendu Biswas 29

extensive synchronization
operations, small CS with

integer operations

use atomic (RMW)
instructions

Reasons for Synchronization-Related
Performance Loss
• Wrong granularity choice

• E.g., look out for refining coarse locks into finer-grained locks

CS636 Swarnendu Biswas 30

large CS with only few
instructions accessing shared

data

shrink CS size to guard only
relevant data

Reasons for Synchronization-Related
Performance Loss
• Over synchronization

• CS data is thread-local or read-only or may write to disjoint addresses

• Operations are already protected by another lock

CS636 Swarnendu Biswas 31

CS data is local, or operations
are already protected by

another lock
remove unnecessary locks

Reasons for Synchronization-Related
Performance Loss
• Asymmetric contention

• E.g., say a poor hash function fails to distribute items to different buckets and
locks are taken per bucket

• Load imbalance
• Waiting time for a group of threads is more than for other group(s) of threads

CS636 Swarnendu Biswas 32

Automated Analyses for Detecting
Synchronization-Related Performance Bugs
• Lock contention detectors

• Thread Profiler, IBM Lock Analyzer, SyncProf, …

• Measure thread idle time, thread synchronization time

• Study impact of critical sections on the critical paths of applications
• Focus on locks that can impact performance

• Detect load imbalance

• General profiling tools

CS636 Swarnendu Biswas 33

Speculative Lock Elision

CS636 Swarnendu Biswas 34

Potential Parallelism Hurt by Synchronization

LOCK(locks->error_lock);
if (local_error > multi->err_multi)
multi->err_multi = local_error;

UNLOCK(locks->error_lock);

CS636 Swarnendu Biswas 35

R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution. MICRO 2001.

Problems with Conservative Locking

• Many lock operations are not necessary
• Updates in the critical sections occur infrequently during execution

• Updates can occur to disjoint parts of the data structure

• Conventional speculative execution in OOO processors are not able to
deal with these situations

CS636 Swarnendu Biswas 36

Speculative Lock Elision (SLE)

Idea

• Speculatively assume lock is not necessary and execute critical section without
acquiring the lock

• Check for conflicts within the critical section

• Roll back if assumption is incorrect

SLE can be provided with both software and hardware
support

CS636 Swarnendu Biswas 37

Challenges in Providing SLE

Either the entire critical section is committed or none of it

Challenges

• How to detect the lock operation that is to be elided?

• How to keep track of dependences and conflicts in the critical section?

• How to buffer speculative state?

• How to check if “atomicity” is violated?

• That is, check for conflicts

• How to support commit and rollback?

CS636 Swarnendu Biswas 38

Maintaining Atomicity

• If atomicity is maintained, all locks can be removed

• Conditions for atomicity
• Data read is not modified by another thread until critical section is complete

• Data written is not accessed by another thread until critical section is
complete

• If we know the beginning and end of a critical section, we can
monitor the memory addresses read or written to by the critical
section and check for conflicts
• For example, using the underlying coherence mechanism

CS636 Swarnendu Biswas 39

Potential SLE Implementation in Hardware

• Checkpoint register state before entering SLE mode

• In SLE mode
• Store: Buffer the update in the write buffer (invisible to other processors),

request exclusive access
• Store/Load: Set “access” bit for block in the cache
• Trigger misspeculation on some coherence actions

• If external invalidation to a block with “access” bit set
• If exclusive access to request to a block with “access” bit set

• If not enough buffering space, trigger misspeculation

• If end of critical section reached without misspeculation, commit all
writes (needs to appear instantaneous)

CS636 Swarnendu Biswas 40

When is SLE Advantageous?

CS636 Swarnendu Biswas 41

There is little contention between the critical section operations
from concurrent threads

Why?

Threads contend for the lock protecting the critical section

Why?

Expected Gains from SLE

Concurrent critical section execution

Reduced memory latencies to lock locations

• Lock memory locations can remain shared

Reduced memory traffic

• No transfer of coherence messages over the bus

CS636 Swarnendu Biswas 42

Limitations

• Hardware implementation is constrained by the size of the cache and the write buffers

SLE vs TM

SLE

• Track memory accesses in
critical sections, detect conflicts,
and perform rollbacks

• “Best effort” – can fallback to
acquire the lock and reexecute
non-speculatively

• Need to identify opportunities
for lock elision

TM

• Track memory accesses in
transactions, detect conflicts,
and perform rollbacks

• TM generally is always
speculative

• Complete program execution
can be transactional

CS636 Swarnendu Biswas 43

Dealing with False Sharing

CS636 Swarnendu Biswas 44

Multicore Parallelism is Easy

int count[8]; // Global array

thread_func(int id) {

for(i = 0; i < M; i++)

count[id]++;

}

CS636 Swarnendu Biswas 45

0

10

20

30

40

50

60

70

80

90

1 2 4 8

R
u

n
 t

im
e

(s
)

Number of threads

Expectation

We are expecting
strong scaling

Multicore Parallelism is Easy

int count[8]; // Global array

thread_func(int id) {

for(i = 0; i < M; i++)

count[id]++;

}

CS636 Swarnendu Biswas 46

0

20

40

60

80

100

120

140

1 2 4 8

R
u

n
 t

im
e

(s
)

Number of threads

Reality Expectation

Cache Coherence

• Multicore processors implement
a cache coherence protocol to
keep private caches in sync

• Operates on whole cache lines
(usually 64 bytes)

• Cache lines have three key
states:
• Read Shared (S), Write Exclusive

(M), Invalid (I)

CS636 Swarnendu Biswas 47

MSI Directory Protocol

CS636 Swarnendu Biswas 48

Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MSI Directory Protocol

CS636 Swarnendu Biswas 49

Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MSI Directory Protocol

CS636 Swarnendu Biswas 50

Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MESI Directory Protocol

CS636 Swarnendu Biswas 51

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MESI Directory Protocol

CS636 Swarnendu Biswas 52

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MESI Directory Protocol

CS636 Swarnendu Biswas 53

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

What is False Sharing?

• Performance problem in systems
with coherence caches
• Cores share cache blocks instead

of actual data
• Contention on cache lines

• Can arise when threads access
global or heap memory
• Thread-local storage and local

variables can be ignored

• False sharing is aggravated by
the size of cache block

CS636 Swarnendu Biswas 54

Cache Contention

True Sharing

• Fixed by means of application
restructuring

False Sharing

• Fixed by code changes or by
automatic repair

CS636 Swarnendu Biswas 55

Impact of False Sharing
int array[100];

void *func(void *param) {
int index = *((int*)param);
int i;
for (i = 0; i < 100000000; i++)
array[index]+=1;

}

int main(int argc, char *argv[]) {
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;

pthread_t thread_1;
pthread_t thread_2;

clock_gettime(CLOCK_REALTIME, …);

func((void*)&first_elem);

func((void*)&bad_elem);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&bad_elem);

pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&good_elem);

pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

}

CS636 Swarnendu Biswas 56

https://github.com/MJjainam/falseSharing/

Impact of False Sharing
int array[100];

void *func(void *param) {
int index = *((int*)param);
int i;
for (i = 0; i < 100000000; i++)
array[index]+=1;

}

int main(int argc, char *argv[]) {
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;

pthread_t thread_1;
pthread_t thread_2;

clock_gettime(CLOCK_REALTIME, …);

func((void*)&first_elem);

func((void*)&bad_elem);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&bad_elem);

pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&good_elem);

pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

}

CS636 Swarnendu Biswas 57

https://github.com/MJjainam/falseSharing/

Millisecond

Sequential computation 351

With false sharing 465

Without false sharing 168

False Sharing in Real Applications

• Issues reported in Linux kernel, JVM, Boost, …

CS636 Swarnendu Biswas 58

Fixing false sharing
improved a metric of
interest by almost 3X

False Sharing is Everywhere

// Global variables
me = 1;
you = 2;

// Heap objects
me = new Foo();

you = new Bar();

// Class/struct fields
class X {

int me;
float you;

};

// Array accesses
array[me] = 12;

array[you] = 13;

CS636 Swarnendu Biswas 59

False Sharing Mitigation Techniques

• Compiler optimizations (cache block padding)

• Cache conscious programming

• Coherence at load/store granularity?

CS636 Swarnendu Biswas 60

Fixing False Sharing is Non-trivial

CS636 Swarnendu Biswas 61

Fixing False Sharing is Non-trivial

• Problem is often embedded inside the source code

• Sensitive to
• Object placements on the cache line

• Memory allocation sequence or memory allocator

• Hardware platform with different cache line sizes

CS636 Swarnendu Biswas 62

gcc accidentally eliminates false sharing in Phoenix linear_regression
benchmark at certain optimization levels, while LLVM does not do so at
any optimization level

Related Work on False Sharing

Sheriff Liu and Berger, OOPSLA’11 detect and repair
unmanaged languagesPlastic Nanavati et al., EuroSys’13

Laser Luo et al, HPCA’16

Cheetah Liu and Liu, CGO’16 detection only

Predator Liu et al., PPoPP’14

Intel vTune Amplifier XE

Oracle Java 8 @Contended annotation and repair

REMIX Eizenberg et al., PLDI’16 detect and repair in
managed runtimes

TMI DeLoizer et al., MICRO’17

CS636 Swarnendu Biswas 63

False Sharing Problem in JVMs
• JVMs provide automatic layout of class fields at load time

• Sort fields by descending order of size

• Pack reference fields to help GC process a contiguous pack of reference fields

• Padding as in C/C++ may not work in Java since the JVM can remove or
reorder unused fields

• Copying GCs move around objects

• Single-threaded environment
• Fields accessed together in time should be nearby in space

• Multithreaded environment
• Not so straightforward, cannot just aim to reduce capacity misses

CS636 Swarnendu Biswas 64

https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing

Easy Thing First! Java 8 @Contended
• Now that you know about false sharing, use @sun.misc.Contended in

Java to (hopefully) get benefits for free

• @Contended helps avoid false sharing, but does not automatically
detect sources of contention

CS636 Swarnendu Biswas 65

https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing

Easy Thing First! Java 8 @Contended
@Contended

public static class ContendedTest2 {

private Object plainField1;

private Object plainField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest2: field layout

Entire class is marked contended

@140 --- instance fields start ---

@140 "plainField1" Ljava.lang.Object;

@144 "plainField2" Ljava.lang.Object;

@148 "plainField3" Ljava.lang.Object;

@152 "plainField4" Ljava.lang.Object;

@288 --- instance fields end ---

@288 --- instance ends ---

public static class ContendedTest1 {

@Contended

private Object contendedField1;

private Object plainField1;

private Object plainField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest1: field layout

@ 12 --- instance fields start ---

@ 12 "plainField1" Ljava.lang.Object;

@ 16 "plainField2" Ljava.lang.Object;

@ 20 "plainField3" Ljava.lang.Object;

@ 24 "plainField4" Ljava.lang.Object;

@156 "contendedField1" Ljava.lang.Object; (contended, group
= 0)

@288 --- instance fields end ---

@288 --- instance ends ---

CS636 Swarnendu Biswas 66

http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html

Easy Thing First! Java 8 @Contended

public static class ContendedTest4 {

@Contended

private Object contendedField1;

@Contended

private Object contendedField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest4: field layout

@ 12 --- instance fields start ---

@ 12 "plainField3" Ljava.lang.Object;

@ 16 "plainField4" Ljava.lang.Object;

@148 "contendedField1" Ljava.lang.Object;
(contended, group = 0)

@280 "contendedField2" Ljava.lang.Object;
(contended, group = 0)

@416 --- instance fields end ---

@416 --- instance ends ---

CS636 Swarnendu Biswas 67

http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html

Sheriff: Precise Detection and Automatic
Mitigation
• Sheriff is a software-only solution that provides

• Per-thread memory protection – allows each thread to track memory
accesses independently of other thread’s accesses

• Memory isolation – allows each thread to read from and write to memory
without interference from other threads

CS636 Swarnendu Biswas 68

T. Liu and E. Berger. Sheriff: Precise Detection and Automatic Mitigation of False Sharing. OOPSLA 2011.

Isolated Memory Access

CS636 Swarnendu Biswas 69

shared address space

Isolated Memory Access

CS636 Swarnendu Biswas 70

shared address space disjoint address space

Tradeoff in Faking Threads with Processes

• Processes are mapped to different CPUs, while threads are mapped to
the same CPU to maximize locality

• Using processes allows Sheriff to use
• Per-thread page protection to detect false conflicts

• Isolates thread’s memory from other threads which implies thread’s do not
write to each other’s cache lines

CS636 Swarnendu Biswas 71

Isolated Memory Accesses

• Processes have separate address spaces  Implies that updates to
shared memory are not visible

• Challenges
• Sheriff now needs to explicitly manage shared resources like file descriptors

• Uses memory mapped files to share shared data (e.g., globals, heap) across
processes
• Two copies are created – one is read-only and the other (CoW) is for local updates

• Private mapping initially points to the read-only page

CS636 Swarnendu Biswas 72

Shared Memory Updates

Updates are made visible only at synchronization points

CS636 Swarnendu Biswas 73

Pthreads

Lock();

XXX;

Unlock();

YYY;

Lock();

Begin_isolated_execution

Commit_local_changes

XXX; //isolated execution

Begin_isolated_execution

Commit_local_changes

YYY; //isolated execution

Sheriff

Sheriff in Action!

Initialization

• Create shared and local mappings for heap and global variables

Transaction begin

• Write protect shared pages, future writes will trap

Execution

• Records pages with faulted addresses and unprotects the page

• Creates a twin page for diffing before a page is modified

• Performs CoW to create a private page

Transaction end

• Commits only diffs between the twin and the private pages

CS636 Swarnendu Biswas 74

Sheriff-Detect: Detect False Sharing

• Idea
• Any cache line with different contents in the private page and the twin page is

due to false sharing

• Can have high overhead for pages that are unshared

• Insight
• For false sharing, two threads must simultaneously access the page

containing the cache line  Implies the page must be shared

• Sheriff-Detect keeps track of the number of writers to a shared page

• Problem if there is a cache line with one writer and rest are readers

CS636 Swarnendu Biswas 75

Sheriff-Protect: Runtime to Avoid False Sharing

• Sheriff-Detect may not work satisfactorily
• Padding may degrade performance due to cache effects and increased

memory consumption

• Source code may not be available to fix false sharing issues

• Insight – Delay updates to avoid false sharing

• Protects only small objects
• Benefit of protection is greater than large objects like arrays

• Cost of protection via committing updates is going to be lower

CS636 Swarnendu Biswas 76

Drawbacks of Sheriff

Cannot detect read-write false sharing

Can only detect false sharing in the observed
executions

CS636 Swarnendu Biswas 77

Predator: Predictive False Sharing Detection

CS636 Swarnendu Biswas 78

Compiler

Instrumentation

Runtime System

Uses LLVM to track memory accesses
• Iterates over all function definitions to

instrument accesses to global and heap
variables

• Inserts calls to an analysis function, with the
memory address and access type

Tracks memory accesses and reports false sharing

T. Liu et al. Predator: Predictive False Sharing Detection. PPoPP 2014.

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

0 0 0 0

Rules for Cache History Table

• For each read R,
• If Table T is full, no need to record R
• If T is not full and existing entry has a different thread ID, then record R

• For each write W,
• If T is full, then W can cause a cache invalidation since at least one of two

existing entries has a different thread ID. Record invalidation. Update the
existing entry.

• If T is not full, check whether W and the existing entry have the same thread
ID
• Same thread ID – W cannot cause a cache invalidation, update existing entry with W
• Different thread ID – Record an invalidation on this line caused by W. Record this

invalidation, and update the existing entry with W.

CS636 Swarnendu Biswas 80

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 r 0 0

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w 0 0

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w T1 r

Track Cache Invalidations

T2T1

r w r w r w rw

1

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w 0 0

Track Cache Invalidations

T2T1

r w r w r w rw

2

of invalidations
time

Each Entry: { Thread ID, Access Type}

T1 w 0 0

Track Cache Invalidations

T2T1

r w r w r w rw

2

of invalidations
time

Each Entry: { Thread ID, Access Type}

T1 w 0 0

Track Cache Invalidations

T2T1

r w r w r w rw

3

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w 0 0

Track Cache Invalidations

T2T1

r w r w r w rw

3

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w T1 r

Is that it?

• Well, true sharing also leads to cache invalidations

• Predator maintains precise per-cache-line-offset metadata

CS636 Swarnendu Biswas 89

Why do we need to predict false sharing?

• Object alignment impacts the
occurrence of false sharing

CS636 Swarnendu Biswas 90

Thread 1 Thread 2

Cache line 1 Cache line 2

Cache line 1 Cache line 2

Cache line 1

Impact on Object Alignment

• 32-bit platform  64-bit platform

• Different memory allocator

• Different compiler or optimizations

• Different allocation order by changing the code

• Run on hardware with different cache line size

CS636 Swarnendu Biswas 91

Prediction in Predator

• Insight
• Only accesses to adjacent lines can lead to potential false sharing

• Virtual cache line
• Contiguous memory range spanning multiple physical cache lines
• Starting address need not be a multiple of the cache line size
• 64-byte line can range from [0, 64) or [8, 72) bytes

• Find “hot” access offsets X and Y
• X in cache line L, and Y in adjacent cache line, and both X and Y are in the

same virtual cache line
• At least one of X and Y is a write
• X and Y are accessed by different threads

CS636 Swarnendu Biswas 92

(sz-d)/2(sz-d)/2

d YX

Tracked virtual line

Non-tracked virtual lines

Track Invalidations on Virtual Cache Lines

• d < cache line size (sz)

• X and Y are accesses from different
threads

• One of X and Y accesses is a write

