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Evaluating an Application

Functional correctness

• Does the application compute/produce what it is supposed to do?

Performance correctness

• Does the application meet the performance requirements?
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Testing for Performance

• No one wants slow and inefficient software
• Leads to reduced throughput, increased latency, and wasted resources

• Leads to poor UX

• Software efficiency is increasingly important
• Hardware is not getting faster (per-core)

• Software is getting more complex

• Saving energy is now a primary concern

Still not 
finished?!!!



What is a Performance Bug?
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Relatively simple modifications to the source code 
results in significant performance improvement, while 
preserving functionality



Functional and Performance Bugs

Functional Bugs

• Well-defined notion of success and 
failure

• Correctness requirements usually do 
not change over time
• Other than significant changes in the 

specification

• More focus on researched testing 
methodologies

• Rate of bugs generally flatten out with 
maturity

Performance Bugs

• Difficult to detect because of no 
failure symptoms

• Performance requirements may 
evolve over time

• Relative lack of formalized testing 
methodologies

• Rate of bugs reported have no trends
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Real Time Requirements

• Must meet the prescribed deadline, complete failure otherwise

Hard

• Can infrequently miss deadlines, the resultant computation might be 
useless, degrades QoS

Firm

• Might miss deadlines as long as the computation continues to have 
some value, degrades QoS

Soft
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Characteristics of Performance Bugs

• Performance bugs can be difficult to fix
• Contradictory requirements – a thread-safe class needs synchronization for 

correctness and needs to scale at the same time

• Diminishing returns in fixing performance bugs
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Thread Safe (?) Class from Groovy
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class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

M. Pradel et al. Performance Regression Testing of Concurrent Classes. ISSTA 2014.



Fixing a Thread Safe Class from Groovy
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class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized) 
this.setInitialized(true);

}
synchronized void setInitialized(boolean b) {
this.initialized = b;

}
synchronized boolean isInitialized() {
return this.initialized;

}
}

Before October 2007: Class is not 
thread-safe because reads and writes 

of initialized are not synchronized

October 2007: Fixed thread safety problem by 
making methods synchronized. Led to 

performance regression reported in May 2009.



Fixing a Thread Safe Class from Groovy

CS636 Swarnendu Biswas 10

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized) 
this.setInitialized(true);

}
synchronized void setInitialized(boolean b) {
this.initialized = b;

}
synchronized boolean isInitialized() {
return this.initialized;

}
}class ExpandoMetaClass {

private volatile boolean initialized;

synchronized void initialize() {
if (!this.initialized) 
this.setInitialized(true);

}
void setInitialized(boolean b) { this.initialized = b; }
boolean isInitialized() { return this.initialized; }

}

September 2009: Fixed performance 
regression by replacing synchronized 

methods with volatile variables



Fixing a Thread Safe Class from Groovy
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class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized)
this.initialized = true;

}
boolean isInitialized() {
return this.initialized;

}
}

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized) 
this.setInitialized(true);

}
synchronized void setInitialized(boolean b) {
this.initialized = b;

}
synchronized boolean isInitialized() {
return this.initialized;

}
}class ExpandoMetaClass {

private volatile boolean initialized;

synchronized void initialize() {
if (!this.initialized) 
this.setInitialized(true);

}
void setInitialized(boolean b) { this.initialized = b; }
boolean isInitialized() { return this.initialized; }

}

September 2009: Fixed performance 
regression by replacing synchronized 

methods with volatile variables

Why have the synchronized keyword 
then? Wouldn’t volatile suffice?



Example 1
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G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Apache HTTPD developers forgot to change a parameter
of API apr_stat after an API upgrade. This mistake caused
more than ten times slowdown in Apache servers.



Example 2
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G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Mozilla developers implemented a procedure nsImage::Draw for figure scaling,
compositing, and rendering, which is a waste of time for transparent figures. This problem
did not catch developers’ attention until two years later when 1 pixel by 1 pixel
transparent GIFs became general purpose spacers widely used by Web developers to
work around certain idiosyncrasies in HTML 4. The patch of this bug skips
nsImage::Draw when the function input is a transparent figure.



Example 3
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G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Users reported that Firefox cost 10 times more CPU than Safari on some popular Web
pages, such as gmail.com. Lengthy profiling and code investigation revealed that Firefox
conducted an expensive garbage collection process GC at the end of every
XMLHttpRequest, which is too frequent. A developer then recalled that GC was added
there five years ago when XHRs were infrequent and each XHR replaced substantial
portions of the DOM in JavaScript. However, things have changed in modern Web pages.
As a primary feature enabling web 2.0, XHRs are much more common than five years ago.
This bug is fixed by removing the call to GC.



Example 4
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G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

Users reported that Firefox hung when they clicked ‘bookmark all (tabs)’ with 20 open tabs. Investigation
revealed that Firefox used N database transactions to bookmark N tabs, which is very time consuming
comparing with batching all bookmark tasks into a single transaction. Discussion among developers
revealed that the database service library of Firefox did not provide interface for aggregating tasks into
one transaction, because there was almost no batchable database task in Firefox a few years back. The
addition of batchable functionalities such as ‘bookmark all (tabs)’ exposed this inefficiency problem. After
replacing N invocations of doTransact with a single doAggregateTransact, the hang disappears. During
patch review, developers found two more places with similar problems and fixed them by
doAggregateTransact.



Example 5
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G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.

MySQL synchronization-library developers implemented a fastmutex_lock for fast
locking. Unfortunately, users’ unit test showed that fastmutex_lock could be 40
times slower than normal locks. It turns out that library function random() actually
contains a lock. This lock serializes every threads that invoke random(). Developers
fixed this bug by replacing random() with a non-synchronized random number
generator.



Performance Bugs are Surprisingly Common!

Type Language # Bugs

Apache Command-line utility + Server + 
Library

C/Java 25

Google Chrome GUI Application C/C++ 10

GCC Compiler C/C++ 10

Mozilla GUI Application C++/JS 36

MySQL Server Software C/C++/C# 28
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G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI 2012.



Reasons for Performance Bugs

Inefficient function call combinations

Redundant work

Resource contention (e.g., suboptimal synchronization, false sharing)

• Many synchronization fixes are just because of performance reasons

Cross core/node communication

Miscellaneous

• Poor data structure choices

• Design/algorithm issues
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How Performance Bugs are Introduced?

• Mismatch in workload characterization

• Wrong API interpretation

• Miscellaneous
• Wrong functional implementation – leads to redundant work

• Changes in performance requirements
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Dealing with Performance Bugs

• Compilers and hardware optimizations may not always fix 
performance problems

• Automation support is limited and is still being explored
• Design better performance tests

• Use annotation systems

• …
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Tracking Synchronization 
Bottlenecks
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Synchronization-Related Factors That Affect 
Performance
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Synchronization-Related Factors That Affect 
Performance
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Synchronization-Related Factors That Affect 
Performance
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Spectrum of Synchronization Operations

Type of Synchronization Ideal Use Case

atomic instructions simple integer operations (RMW, exchange)

spin locks small critical sections with low contention

read/write locks critical sections with many readers

try locks alternate control flow 

mutex locks larger critical sections and may involve waiting
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Reasons for Synchronization-Related 
Performance Loss
• Use of improper primitives

• E.g., use of try locks in case of repeated failures, blocking synchronization 
with condition variables might be better

CS636 Swarnendu Biswas 28

extensive synchronization 
operations, small CS with 

integer operations



Reasons for Synchronization-Related 
Performance Loss
• Use of improper primitives

• E.g., use of try locks in case of repeated failures, blocking synchronization 
with condition variables might be better
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extensive synchronization 
operations, small CS with 

integer operations

use atomic (RMW) 
instructions



Reasons for Synchronization-Related 
Performance Loss
• Wrong granularity choice

• E.g., look out for refining coarse locks into finer-grained locks
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large CS with only few 
instructions accessing shared 

data

shrink CS size to guard only 
relevant data



Reasons for Synchronization-Related 
Performance Loss
• Over synchronization

• CS data is thread-local or read-only or may write to disjoint addresses

• Operations are already protected by another lock

CS636 Swarnendu Biswas 31

CS data is local, or operations 
are already protected by 

another lock
remove unnecessary locks



Reasons for Synchronization-Related 
Performance Loss
• Asymmetric contention

• E.g., say a poor hash function fails to distribute items to different buckets and 
locks are taken per bucket

• Load imbalance
• Waiting time for a group of threads is more than for other group(s) of threads
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Automated Analyses for Detecting 
Synchronization-Related Performance Bugs
• Lock contention detectors

• Thread Profiler, IBM Lock Analyzer, SyncProf, … 

• Measure thread idle time, thread synchronization time

• Study impact of critical sections on the critical paths of applications
• Focus on locks that can impact performance

• Detect load imbalance

• General profiling tools
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Speculative Lock Elision
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Potential Parallelism Hurt by Synchronization

LOCK(locks->error_lock);
if (local_error > multi->err_multi)
multi->err_multi = local_error;

UNLOCK(locks->error_lock);
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R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution. MICRO 2001.



Problems with Conservative Locking

• Many lock operations are not necessary 
• Updates in the critical sections occur infrequently during execution 

• Updates can occur to disjoint parts of the data structure

• Conventional speculative execution in OOO processors are not able to 
deal with these situations
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Speculative Lock Elision (SLE)

Idea

• Speculatively assume lock is not necessary and execute critical section without 
acquiring the lock 

• Check for conflicts within the critical section 

• Roll back if assumption is incorrect

SLE can be provided with both software and hardware 
support
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Challenges in Providing SLE

Either the entire critical section is committed or none of it

Challenges

• How to detect the lock operation that is to be elided?

• How to keep track of dependences and conflicts in the critical section?

• How to buffer speculative state?

• How to check if “atomicity” is violated?

• That is, check for conflicts

• How to support commit and rollback?
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Maintaining Atomicity

• If atomicity is maintained, all locks can be removed 

• Conditions for atomicity 
• Data read is not modified by another thread until critical section is complete 

• Data written is not accessed by another thread until critical section is 
complete 

• If we know the beginning and end of a critical section, we can 
monitor the memory addresses read or written to by the critical 
section and check for conflicts 
• For example, using the underlying coherence mechanism
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Potential SLE Implementation in Hardware

• Checkpoint register state before entering SLE mode 

• In SLE mode
• Store: Buffer the update in the write buffer (invisible to other processors), 

request exclusive access 
• Store/Load: Set “access” bit for block in the cache 
• Trigger misspeculation on some coherence actions 

• If external invalidation to a block with “access” bit set 
• If exclusive access to request to a block with “access” bit set 

• If not enough buffering space, trigger misspeculation 

• If end of critical section reached without misspeculation, commit all 
writes (needs to appear instantaneous) 
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When is SLE Advantageous?
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There is little contention between the critical section operations 
from concurrent threads

Why?

Threads contend for the lock protecting the critical section

Why?



Expected Gains from SLE

Concurrent critical section execution

Reduced memory latencies to lock locations

• Lock memory locations can remain shared

Reduced memory traffic

• No transfer of coherence messages over the bus
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Limitations

• Hardware implementation is constrained by the size of the cache and the write buffers



SLE vs TM

SLE

• Track memory accesses in 
critical sections, detect conflicts, 
and perform rollbacks

• “Best effort” – can fallback to 
acquire the lock and reexecute 
non-speculatively

• Need to identify opportunities 
for lock elision

TM

• Track memory accesses in 
transactions, detect conflicts, 
and perform rollbacks

• TM generally is always 
speculative

• Complete program execution 
can be transactional
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Dealing with False Sharing 
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Multicore Parallelism is Easy

int count[8]; // Global array

thread_func(int id) {

for(i = 0; i < M; i++)

count[id]++;

}
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Multicore Parallelism is Easy

int count[8]; // Global array

thread_func(int id) {

for(i = 0; i < M; i++)

count[id]++;

}
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Cache Coherence

• Multicore processors implement 
a cache coherence protocol to 
keep private caches in sync

• Operates on whole cache lines 
(usually 64 bytes)

• Cache lines have three key 
states:
• Read Shared (S), Write Exclusive 

(M), Invalid (I)
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MSI Directory Protocol
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Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence. 



MSI Directory Protocol
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Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence. 



MSI Directory Protocol
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Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence. 



MESI Directory Protocol
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Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence. 



MESI Directory Protocol
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Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence. 



MESI Directory Protocol

CS636 Swarnendu Biswas 53

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence. 



What is False Sharing?

• Performance problem in systems 
with coherence caches
• Cores share cache blocks instead 

of actual data
• Contention on cache lines

• Can arise when threads access 
global or heap memory
• Thread-local storage and local 

variables can be ignored

• False sharing is aggravated by 
the size of cache block
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Cache Contention

True Sharing

• Fixed by means of application 
restructuring

False Sharing

• Fixed by code changes or by 
automatic repair
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Impact of False Sharing
int array[100];

void *func(void *param) {     
int index = *((int*)param);
int i;
for (i = 0; i < 100000000; i++)
array[index]+=1;

} 

int main(int argc, char *argv[]) { 
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;

pthread_t thread_1;
pthread_t thread_2;

clock_gettime(CLOCK_REALTIME, …);

func((void*)&first_elem);

func((void*)&bad_elem);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&bad_elem);

pthread_join(thread_1, NULL); 

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);   

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&good_elem);

pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

}
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https://github.com/MJjainam/falseSharing/



Impact of False Sharing
int array[100];

void *func(void *param) {     
int index = *((int*)param);
int i;
for (i = 0; i < 100000000; i++)
array[index]+=1;

} 

int main(int argc, char *argv[]) { 
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;

pthread_t thread_1;
pthread_t thread_2;

clock_gettime(CLOCK_REALTIME, …);

func((void*)&first_elem);

func((void*)&bad_elem);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&bad_elem);

pthread_join(thread_1, NULL); 

pthread_join(thread_2, NULL);

clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);   

pthread_create(&thread_1, NULL,func, (void*)&first_elem);

pthread_create(&thread_2, NULL,func, (void*)&good_elem);
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}
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https://github.com/MJjainam/falseSharing/

Millisecond

Sequential computation 351

With false sharing 465

Without false sharing 168



False Sharing in Real Applications

• Issues reported in Linux kernel, JVM, Boost, … 
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Fixing false sharing 
improved a metric of 
interest by almost 3X



False Sharing is Everywhere

// Global variables 
me = 1;
you = 2; 

// Heap objects
me = new Foo();

you = new Bar();

// Class/struct fields
class X {

int me; 
float you;

};

// Array accesses
array[me] = 12;

array[you] = 13;
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False Sharing Mitigation Techniques

• Compiler optimizations (cache block padding)

• Cache conscious programming

• Coherence at load/store granularity?
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Fixing False Sharing is Non-trivial
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Fixing False Sharing is Non-trivial

• Problem is often embedded inside the source code

• Sensitive to 
• Object placements on the cache line

• Memory allocation sequence or memory allocator 

• Hardware platform with different cache line sizes
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gcc accidentally eliminates false sharing in Phoenix linear_regression 
benchmark at certain optimization levels, while LLVM does not do so at 
any optimization level



Related Work on False Sharing

Sheriff Liu and Berger, OOPSLA’11 detect and repair 
unmanaged languagesPlastic Nanavati et al., EuroSys’13

Laser Luo et al, HPCA’16

Cheetah Liu and Liu, CGO’16 detection only

Predator Liu et al., PPoPP’14

Intel vTune Amplifier XE

Oracle Java 8 @Contended annotation and repair

REMIX Eizenberg et al., PLDI’16 detect and repair in 
managed runtimes

TMI DeLoizer et al., MICRO’17

CS636 Swarnendu Biswas 63



False Sharing Problem in JVMs
• JVMs provide automatic layout of class fields at load time

• Sort fields by descending order of size

• Pack reference fields to help GC process a contiguous pack of reference fields

• Padding as in C/C++ may not work in Java since the JVM can remove or 
reorder unused fields

• Copying GCs move around objects

• Single-threaded environment
• Fields accessed together in time should be nearby in space

• Multithreaded environment
• Not so straightforward, cannot just aim to reduce capacity misses
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https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing



Easy Thing First! Java 8 @Contended
• Now that you know about false sharing, use @sun.misc.Contended in 

Java to (hopefully) get benefits for free

• @Contended helps avoid false sharing, but does not automatically 
detect sources of contention
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https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing



Easy Thing First! Java 8 @Contended
@Contended

public static class ContendedTest2 {

private Object plainField1;

private Object plainField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest2: field layout

Entire class is marked contended

@140 --- instance fields start ---

@140 "plainField1" Ljava.lang.Object;

@144 "plainField2" Ljava.lang.Object;

@148 "plainField3" Ljava.lang.Object;

@152 "plainField4" Ljava.lang.Object;

@288 --- instance fields end ---

@288 --- instance ends ---

public static class ContendedTest1 {

@Contended

private Object contendedField1;

private Object plainField1;

private Object plainField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest1: field layout

@ 12 --- instance fields start ---

@ 12 "plainField1" Ljava.lang.Object;

@ 16 "plainField2" Ljava.lang.Object;

@ 20 "plainField3" Ljava.lang.Object;

@ 24 "plainField4" Ljava.lang.Object;

@156 "contendedField1" Ljava.lang.Object; (contended, group 
= 0)

@288 --- instance fields end ---

@288 --- instance ends ---
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http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html



Easy Thing First! Java 8 @Contended

public static class ContendedTest4 {

@Contended

private Object contendedField1;

@Contended

private Object contendedField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest4: field layout

@ 12 --- instance fields start ---

@ 12 "plainField3" Ljava.lang.Object;

@ 16 "plainField4" Ljava.lang.Object;

@148 "contendedField1" Ljava.lang.Object; 
(contended, group = 0)

@280 "contendedField2" Ljava.lang.Object; 
(contended, group = 0)

@416 --- instance fields end ---

@416 --- instance ends ---
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http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html



Sheriff: Precise Detection and Automatic 
Mitigation
• Sheriff is a software-only solution that provides

• Per-thread memory protection – allows each thread to track memory 
accesses independently of other thread’s accesses

• Memory isolation – allows each thread to read from and write to memory 
without interference from other threads

CS636 Swarnendu Biswas 68

T. Liu and E. Berger. Sheriff: Precise Detection and Automatic Mitigation of False Sharing. OOPSLA 2011.



Isolated Memory Access
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shared address space



Isolated Memory Access
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shared address space disjoint address space



Tradeoff in Faking Threads with Processes

• Processes are mapped to different CPUs, while threads are mapped to 
the same CPU to maximize locality

• Using processes allows Sheriff to use 
• Per-thread page protection to detect false conflicts

• Isolates thread’s memory from other threads which implies thread’s do not 
write to each other’s cache lines
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Isolated Memory Accesses

• Processes have separate address spaces   Implies that updates to 
shared memory are not visible

• Challenges
• Sheriff now needs to explicitly manage shared resources like file descriptors

• Uses memory mapped files to share shared data (e.g., globals, heap) across 
processes
• Two copies are created – one is read-only and the other (CoW) is for local updates

• Private mapping initially points to the read-only page
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Shared Memory Updates

Updates are made visible only at synchronization points
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Pthreads

Lock();

XXX;

Unlock();

YYY;

Lock();

Begin_isolated_execution

Commit_local_changes

XXX;    //isolated execution

Begin_isolated_execution

Commit_local_changes

YYY;    //isolated execution

Sheriff



Sheriff in Action!

Initialization

• Create shared and local mappings for heap and global variables

Transaction begin

• Write protect shared pages, future writes will trap

Execution

• Records pages with faulted addresses and unprotects the page

• Creates a twin page for diffing before a page is modified

• Performs CoW to create a private page 

Transaction end

• Commits only diffs between the twin and the private pages
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Sheriff-Detect: Detect False Sharing

• Idea
• Any cache line with different contents in the private page and the twin page is 

due to false sharing

• Can have high overhead for pages that are unshared

• Insight
• For false sharing, two threads must simultaneously access the page 

containing the cache line   Implies the page must be shared

• Sheriff-Detect keeps track of the number of writers to a shared page

• Problem if there is a cache line with one writer and rest are readers
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Sheriff-Protect: Runtime to Avoid False Sharing

• Sheriff-Detect may not work satisfactorily
• Padding may degrade performance due to cache effects and increased 

memory consumption

• Source code may not be available to fix false sharing issues

• Insight – Delay updates to avoid false sharing

• Protects only small objects
• Benefit of protection is greater than large objects like arrays

• Cost of protection via committing updates is going to be lower
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Drawbacks of Sheriff

Cannot detect read-write false sharing

Can only detect false sharing in the observed 
executions
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Predator: Predictive False Sharing Detection
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Compiler 

Instrumentation

Runtime System

Uses LLVM to track memory accesses
• Iterates over all function definitions to 

instrument accesses to global and heap 
variables

• Inserts calls to an analysis function, with the 
memory address and access type

Tracks memory accesses and reports false sharing

T. Liu et al. Predator: Predictive False Sharing Detection. PPoPP 2014.



Track Cache Invalidations

T2T1

r w r w r w rw

0

# of invalidations
time 

Each Entry: { Thread ID, Access Type}

0 0 0 0



Rules for Cache History Table

• For each read R,
• If Table T is full, no need to record R
• If T is not full and existing entry has a different thread ID, then record R 

• For each write W,
• If T is full, then W can cause a cache invalidation since at least one of two 

existing entries has a different thread ID. Record invalidation. Update the 
existing entry.

• If T is not full, check whether W and the existing entry have the same thread 
ID
• Same thread ID – W cannot cause a cache invalidation, update existing entry with W
• Different thread ID – Record an invalidation on this line caused by W. Record this 

invalidation, and update the existing entry with W.
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Track Cache Invalidations
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Is that it?

• Well, true sharing also leads to cache invalidations

• Predator maintains precise per-cache-line-offset metadata
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Why do we need to predict false sharing?

• Object alignment impacts the 
occurrence of false sharing
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Thread 1 Thread 2

Cache line 1 Cache line 2

Cache line 1 Cache line 2

Cache line 1



Impact on Object Alignment

• 32-bit platform   64-bit platform

• Different memory allocator

• Different compiler or optimizations

• Different allocation order by changing the code

• Run on hardware with different cache line size

CS636 Swarnendu Biswas 91



Prediction in Predator

• Insight
• Only accesses to adjacent lines can lead to potential false sharing

• Virtual cache line
• Contiguous memory range spanning multiple physical cache lines
• Starting address need not be a multiple of the cache line size
• 64-byte line can range from [0, 64) or [8, 72) bytes

• Find “hot” access offsets X and Y
• X in cache line L, and Y in adjacent cache line, and both X and Y are in the 

same virtual cache line
• At least one of X and Y is a write 
• X and Y are accessed by different threads
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(sz-d)/2(sz-d)/2

d YX

Tracked virtual line

Non-tracked virtual lines

Track Invalidations on Virtual Cache Lines

• d < cache line size (sz)

• X and Y are accesses from different 
threads 

• One of X and Y accesses is a write


